Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
J Med Chem ; 67(8): 6839-6853, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38590144

RESUMO

Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.


Assuntos
Antineoplásicos , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Feminino , Espermina/farmacologia , Espermina/metabolismo , Paládio/química , Paládio/farmacologia
2.
Photochem Photobiol Sci ; 23(3): 539-560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457119

RESUMO

Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Porfirinas , Animais , Humanos , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Staphylococcus aureus , Oxigênio Singlete/química , Plâncton , Paládio/farmacologia , Fotoquimioterapia/métodos , Anti-Infecciosos/química , Biofilmes , Oxigênio , Mamíferos
3.
J Inorg Biochem ; 253: 112488, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325158

RESUMO

Herein, we report the synthesis and biological evaluation of [Pd(L)(OH2)Cl] complex (where L = 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione) as a novel promising anticancer candidate. The complex was characterized by single-crystal X-ray diffraction and other various spectroscopic techniques. Besides, the optimized structure was determined through DFT calculations revealing that the coordination geometry of [Pd(L)(OH2)Cl] complex is square planar. The binding propensity of [Pd(L)(OH2)Cl] complex with DNA and BSA was assessed by the spectrophotometric method. The antimicrobial profile of the ligand and its [Pd(L)(OH2)Cl] complex was screened against clinically important bacterial strains. [Pd(L)(OH2)Cl] complex showed promising activity against these microorganisms. Pd(L)(OH2)Cl] complex exhibited a potent antiproliferative potential compared to its ligand against different human cancer cells (A549, HCT116, MDA-MB-231, and HepG2) with less toxic effect against normal cells (WI-38). Additionally, [Pd(L)(OH2)Cl] complex exerted its anticancer effects against the most responsive cells (HCT116 cells; IC50 = 11 ± 1 µM) through suppressing their colony-forming capabilities and triggering apoptosis and cell cycle arrest at S phase. Quantitative PCR analysis revealed a remarkable upregulation of the mRNA expression level of p53 and caspase-3 by 4.8- and 5.9-fold, respectively, relative to control. Remarkable binding properties and non-covalent interactions between L and its [Pd(L)(OH2)Cl] complex with the binding sites of different receptors including CDK2, MurE ligase, DNA, and BSA were established using molecular docking. Based on our results, [Pd(L)(OH2)Cl] complex is an intriguing candidate for future investigations as a potential anticancer drug for the treatment of colon cancer.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cicloexanonas , Humanos , Paládio/farmacologia , Paládio/química , Simulação de Acoplamento Molecular , Ligantes , Antineoplásicos/química , DNA/química , Complexos de Coordenação/química , Linhagem Celular Tumoral
4.
Adv Mater ; 36(7): e2306376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944993

RESUMO

Designing an effective treatment strategy to combat oral diseases caused by complex polymicrobial biofilms remains a great challenge. Herein, a series of metal-phenolic network with Pd nanoparticle nodes using polyphenols as stabilizers and reducing agents is constructed. Among them, sulfonated lignin-Pd (SLS-Pd) with ultrafine size palladium nanoparticles and broadband near infrared absorption exhibit excellent oxidase-like activity and stable photothermal effect. In vitro experiments demonstrate that the superoxide radical generated by SLS-Pd oxidase-like activity exhibits selective antibacterial effects, while its photothermal effect induced hyperthermia exhibits potent antifungal properties. This difference is further elucidated by RNA-sequencing analysis and all-atom simulation. Moreover, the SLS-Pd-mediated synergistic antimicrobial system exhibits remarkable efficacy in combating various biofilms and polymicrobial biofilms. By establishing a root canal model and an oropharyngeal candidiasis model, the feasibility of the synergistic antimicrobial system in treating oral biofilm-related infections is further validated. This system provides a promising therapeutic approach for polymicrobial biofilm-associated infections in the oral cavity.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas Metálicas/uso terapêutico , Paládio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes
5.
Chembiochem ; 25(6): e202300696, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38146865

RESUMO

Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for in vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5 µM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50 µM.


Assuntos
Antineoplásicos , Complexos de Coordenação , Platina/farmacologia , Platina/química , Ligantes , Cisplatino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antivirais/farmacologia , Paládio/farmacologia , Paládio/química , Cristalografia por Raios X , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Linhagem Celular Tumoral
6.
Eur J Med Chem ; 264: 116034, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103541

RESUMO

Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Cisplatino/farmacologia , Paládio/farmacologia , Caenorhabditis elegans , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral
7.
Nanoscale ; 16(1): 394-410, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38073471

RESUMO

This study aimed to investigate the effects of nanoparticles on macrophage polarization and their subsequent influence on post-tumorigenic behavior. Initially, seven different nanoparticles were applied to macrophages, and Zn-Ni-FeO (100 nm) and palladium nanoparticles (PdNPs, ∼25 nm) were found to induce M1-polarization in macrophages. A co-culture experiment was then conducted to examine the effects of macrophages on MCF-7 breast cancer micro-tissues. The M2-macrophages promoted tumor proliferation, while M1- and PdNPs-induced macrophages showed anti-tumor effects by suppressing cell proliferation. To reveal the mechanisms of effect, exosomes isolated from M1 (M1-Exo), M0 (M0-Exo), M2 (M2-Exo), and PdNPs-induced (PdNPs-Exo) macrophages were applied to the heterotypic tumor micro-tissues including MCF-7, human umbilical vein endothelial cells (HUVECs), and primary human dermal fibroblasts (phDFs). M2-Exo was seen to promote the migration of cancer cells and induce epithelial-mesenchymal transition (EMT), while M1-Exo suppressed these behaviors. PdNPs-Exo was effective in suppressing the aggressive nature of breast cancer cells similar to M1-Exo, moreover, the efficacy of 5-fluorouracil (5-FU) was increased in combination with PdNPs-Exo in both MCF-7 and heterotypic micro-tissues. In conclusion, PdNPs-Exo has potential anti-tumor effects, can be used as a combination therapy to enhance the efficacy of anti-cancer drugs, as well as innovative implants for breast cancer treatment.


Assuntos
Neoplasias da Mama , Exossomos , Nanopartículas Metálicas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Células Endoteliais/patologia , Paládio/farmacologia , Macrófagos/patologia
8.
Lasers Med Sci ; 39(1): 3, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082158

RESUMO

Palladium nanoparticles (Pd NPs) show significant promise as agents for the photothermal treatment of tumors due to their high photothermal conversion efficiency and thermal stability. theoretical calculations were conducted to investigate the electric field and solid heat conduction of Pd NPs with various sizes and particle distances, aiming to achieve the maximum photothermal conversion efficiency during laser irradiation. Subsequently, Pd NPs with optimal size and structure were synthesized. In vitro and in vivo experiments were conducted to evaluate photothermal conversion. The theoretical results indicated that a peak temperature of 90.12 °C is achieved when the side length is 30 nm with a distance of 2 nm. In vitro experiments demonstrated that the photothermal conversion efficiency of Pd NPs can reach up to 61.9%. in vivo experiments revealed that injecting Pd NPs into blood vessels can effectively reduce the number of laser pulses by 22.22%, thereby inducing obvious vasoconstriction.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Paládio/farmacologia , Paládio/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Análise de Elementos Finitos , Nanopartículas/química , Neoplasias/terapia , Luz , Fototerapia/métodos , Linhagem Celular Tumoral
9.
Angew Chem Int Ed Engl ; 62(50): e202313968, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37884479

RESUMO

Macrophage phagocytosis of tumor cells has emerged as an attractive strategy for tumor therapy. Nevertheless, immunosuppressive M2 macrophages in the tumor microenvironment and the high expression of anti-phagocytic signals from tumor cells impede therapeutic efficacy. To address these issues and improve the management of malignant tumors, in this study we developed a gene-editable palladium-based bioorthogonal nanoplatform, consisting of CRISPR/Cas9 gene editing system-linked Pd nanoclusters, and a hyaluronic acid surface layer (HBPdC). This HBPdC nanoplatform exhibited satisfactory tumor-targeting efficiency and triggered Fenton-like reactions in the tumor microenvironment to generate reactive oxygen species for chemodynamic therapy and macrophage M1 polarization, which directly eliminated tumor cells, and stimulated the antitumor response of macrophages. HBPdC could reprogram tumor cells through gene editing to reduce the expression of CD47 and adipocyte plasma membrane-associated protein, thereby promoting their recognition and phagocytosis by macrophages. Moreover, HBPdC induced the activation of sequestered prodrugs via bioorthogonal catalysis, enabling chemotherapy and thereby enhancing tumor cell death. Importantly, the Pd nanoclusters of HBPdC were sufficiently cleared through basic metabolic pathways, confirming their biocompatibility and biosafety. Therefore, by promoting macrophage phagocytosis, the HBPdC system developed herein represents a highly promising antitumor toolset for cancer therapy applications.


Assuntos
Neoplasias , Paládio , Humanos , Paládio/farmacologia , Paládio/metabolismo , Linhagem Celular Tumoral , Macrófagos/metabolismo , Fagocitose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Microambiente Tumoral/genética
10.
Chem Biodivers ; 20(12): e202301170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37850505

RESUMO

Two new palladium (II) complexes, [Pd(CAZ)(OH2 )2 ]2+ (1) and [Pd(3-AT)(OH2 )2 ]2+ (2), (CAZ=ceftazidime, and 3-AT=amitrole) were synthesized and studied for their potential as anticancer drugs with low toxicity and high potency. To fully characterize these complexes, we conducted elemental analysis and FT-IR studies. Furthermore, we irradiated the complexes with Indian 60 Co gamma rays and thoroughly evaluated their antimicrobial properties. Our results demonstrate that the inhibitory activity of complexes was significantly enhanced against (G+) bacteria and fungi. Additionally, we probed the complexes' interaction with CT-DNA and BSA using various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, and molecular docking studies. Our findings conclusively demonstrate that these complexes possess a strong binding interaction with CT-DNA via minor groove binding and/or electrostatic interactions, as well as excellent binding affinity to BSA. Finally, we conducted a cytotoxicity assay that clearly indicates these complexes hold immense promise as cell growth inhibitors against MCF-7 and HCT-116.


Assuntos
Antineoplásicos , Complexos de Coordenação , Simulação de Acoplamento Molecular , Ceftazidima , Espectroscopia de Infravermelho com Transformada de Fourier , Triazóis , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Tomografia Computadorizada por Raios X , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Paládio/farmacologia , Paládio/química , Soroalbumina Bovina/química
11.
Bioorg Chem ; 141: 106838, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37717414

RESUMO

Six pyrazolopyrimidine rhodium(III) or palladium(II) complexes, [Rh(L1)(H2O)Cl3] (1), [Rh(L2)(CH3OH)Cl3] (2), [Rh(L3)(H2O)Cl3] (3), [Rh2(L4)Cl6]·CH3OH (4), [Rh(L5)(CH3CN)Cl3]·0.5CH3CN (5), and [Pd(L5)Cl2] (6), were synthesized and characterized. These complexes showed high cytotoxicity against six tested cancer cell lines. Most of the complexes showed higher cytotoxicity to T-24 cells in vitro than cisplatin. Mechanism studies indicated that complexes 5 and 6 induced G2/M phase cell cycle arrest through DNA damage, and induced apoptosis via endoplasmic reticulum stress response. In addition, complex 5 also induced cell apoptosis via mitochondrial dysfunction. Complexes 5 and 6 showed low in vivo toxicity and high tumor growth inhibitory activity in mouse tumor models. The inhibitory effect of rhodium complex 5 on tumor growth in vivo was more pronounced than that of palladium complex 6.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Ródio , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Ródio/farmacologia , Paládio/farmacologia , Linhagem Celular , Neoplasias/tratamento farmacológico , Apoptose , Complexos de Coordenação/farmacologia , Linhagem Celular Tumoral
12.
Colloids Surf B Biointerfaces ; 230: 113529, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37708713

RESUMO

Due to the high mortality and incidence rates associated with tumors and the specificity of the tumor microenvironment (TME), it is difficult to achieve a complete cure for tumors using a single therapy. In this study, calcium carbonate-modified palladium hydride nanoparticles (PdH@CaCO3) were prepared and utilized for the combined treatment of tumors through chemodynamic therapy (CDT)/photothermal therapy (PTT) and calcium overload therapy. After entering tumor cells, PdH@CaCO3 releases calcium ions (Ca2+) and PdH once it reaches the TME due to the pH reactivity of the calcium carbonate coating. The mitochondrial membrane potential is lowered by the Ca2+, leading to irreversible cell damage. Meanwhile, PdH reacts with excessive hydrogen peroxide (H2O2) in the TME via the Fenton reaction, generating hydroxyl radicals (·OH). Moreover, PdH is an excellent photothermal agent that can kill tumor cells under laser irradiation, leading to significant anti-tumor effects. In vitro and in vivo studies have demonstrated that PdH@CaCO3 could combine CDT/PTT and calcium overload therapy, exhibiting great clinical potential in the treatment of tumors.


Assuntos
Nanopartículas Multifuncionais , Neoplasias , Humanos , Cálcio , Peróxido de Hidrogênio , Paládio/farmacologia , Carbonato de Cálcio , Neoplasias/terapia , Microambiente Tumoral
13.
J Biol Inorg Chem ; 28(8): 711-723, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768364

RESUMO

In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl2(HL1)]. All the studied compounds lower the proliferation of the amastigote form of Trypanosoma cruzi while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit T. cruzi release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.


Assuntos
Tiossemicarbazonas , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Paládio/farmacologia , Paládio/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Ligantes , Parasitemia , Platina/química , Tripanossomicidas/farmacologia , Cumarínicos/farmacologia , Mamíferos
14.
Int J Nanomedicine ; 18: 4805-4819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635910

RESUMO

Purpose: We aimed to develop an oxidative-stress-activated palladium-copper nanozyme to reduce bacterial's heat sensitivity by down-regulating heat shock proteins to overcome the shortcomings of conventional photothermal antimicrobial therapy and achieve mild photothermal bactericidal efficacy. Methods: We first synthesized palladium-copper nanozymes (PC-NPs) by hydration and used transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy to demonstrate their successful preparation. Their photothermal therapy (PTT) and chemo-dynamic therapy (CDT) activities were then determined by a series of photothermal performance tests and peroxidase-like performance tests, and the destruction of heat shock proteins by reactive oxygen species (ROS) was verified at the protein level by Western Blotting tests, providing a basis for the effective bacteria-killing by the mild-temperature photothermal treatment subsequently applied. We also validated this promising programmed and controlled antimicrobial treatment with palladium-copper nanozymes by in vivo/in vitro antimicrobial assays. A hemolysis assay, MTT cytotoxicity test and histopathological analysis were also performed to assess the in vivo safety of PC-NPs. Results: In the micro-acidic environment of bacterial infection, PC-NPs showed peroxidase-like activity that broke down the H2O2 at the wound into hydroxyl radicals and down-regulated bacterial heat shock proteins. The application of PC-NPs increased bacteria's sensitivity to subsequent photothermal treatment, enabling the elimination of bacteria via mild photothermal treatment. Conclusion: The programmed synergistic catalytic enhancement of CDT and mild photothermal therapy achieves the most efficient killing of bacteria and their biofilms, which brings future thinking in the relationship between heat shock proteins and oxidative stress damage in bacteria.


Assuntos
Infecções Bacterianas , Cobre , Humanos , Cobre/farmacologia , Regulação para Baixo , Peróxido de Hidrogênio , Paládio/farmacologia , Terapia Fototérmica , Temperatura , Bactérias
15.
Sci Rep ; 13(1): 14039, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640751

RESUMO

Microbial pathogens are known for causing great environmental stress, owing to which emerging challenges like lack of eco-friendly remediation measures, development of drug-resistant and mutational microbial strains, etc., warrants novel and green routes as a stepping stone to serve such concerns sustainably. In the present study, palladium (Pd) doped manganese (II, III) oxide (Mn3O4) nanoparticles (NPs) were synthesized using an aqueous Syzygium aromaticum bud (ASAB) extract. Preliminary phytochemical analysis of ASAB extract indicates the presence of polyphenolics such as phenols, alkaloids, and flavonoids that can act as potential capping agents in NPs synthesis, which was later confirmed in FTIR analysis of pure and Pd-doped Mn3O4 NPs. XRD, Raman, and XPS analyses confirmed the Pd doping in Mn3O4 NPs. FESEM and HRTEM study reveals the mixed morphologies dominated by nanocorns appearance. Zeta potential investigation reveals high stability of the synthesized NPs in colloidal solutions. The developed Pd-doped Mn3O4 NPs were tested against two fungal phytopathogens, i.e., Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, known for causing great economic losses in yield and quality of different plant species. The antifungal activity of synthesized Pd-doped Mn3O4 NPs displayed a dose-dependent response with a maximum of ~92%, and ~72% inhibition was recorded against S. sclerotiorum and C. gloeosporioides, respectively, at 1000 ppm concentration. However, C. gloeosporioides demonstrated higher sensitivity to Pd-doped Mn3O4 NPs upto 500 ppm) treatment than S. sclerotiorum. The prepared NPs also showed significant antibacterial activity against Enterococcus faecalis. The Pd-doped Mn3O4 NPs were effective even at low treatment doses, i.e., 50-100 ppm, with the highest Zone of inhibition obtained at 1000 ppm concentration. Our findings provide a novel, eco-benign, and cost-effective approach for formulating a nanomaterial composition offering multifaceted utilities as an effective antimicrobial agent.


Assuntos
Anti-Infecciosos , Manganês , Animais , Paládio/farmacologia
16.
Carbohydr Res ; 532: 108920, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586143

RESUMO

Cinnamic acid-containing sugar compounds such as phenylethanoid glycosides are widely present in nature and display various biological activities. In this work, the synthesis of trans-cinnamic acid containing phenylethanoid glycosides was achieved via palladium-catalyzed cross-coupling reactions between glycosyl acrylic esters and aryldiazonium salts. A wide range of functionalized aryldiazonium salts were successfully coupled with 6-O- and 4-O-acrylic esters of glucose under optimized conditions. The reactions proceeded at room temperature in the absence of additives and base. The desired products were obtained in good to excellent yields. Selected compounds from the library were screened for anti-Alzheimer activity, while compound 16 displayed significant inhibitory activities against butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes.


Assuntos
Butirilcolinesterase , Glicosídeos , Glicosídeos/farmacologia , Acetilcolinesterase , Paládio/farmacologia , Sais/farmacologia , Glucose , Ésteres/farmacologia , Catálise
17.
Nanotechnology ; 34(46)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37527629

RESUMO

Folate receptor-targeted therapy has excellent prospects for the treatment of breast cancer. A non-toxic concentration of folate-conjugated palladium-based nanoparticles was used to target the overexpressed folate receptor on breast cancer cells. The folate-conjugated nanoparticles were tailored to accumulate selectively in cancer cells relative to normal cells via the folate receptor. The MDA-MB-231, MDA-MB-468, MCF-7 breast cancer cell lines, and MCF-10A normal cell lines were used in the study. Qualitative and quantitative analysis of nanoparticle cellular uptake and accumulation was conducted using transmission electron microscopy and inductively coupled plasma-optical emission spectroscopy. The findings proved that folate-conjugated palladium nanoparticles successfully and preferentially accumulated in breast cancer cells. We conclude that folate-conjugated palladium nanoparticles can be potentially used to target breast cancer cells for radiopharmaceutical applications.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Paládio/farmacologia , Nanopartículas Metálicas/química , Ácido Fólico/química , Nanopartículas/química , Células MCF-7 , Linhagem Celular Tumoral
18.
J Mater Chem B ; 11(33): 7942-7949, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37539820

RESUMO

Nanozymes are artificial enzymes that mimic natural enzyme-like activities and exhibit tremendous potential for tumor chemodynamic therapy. However, the development of novel nanozymes with superior catalytic activities for nanotheranostics remains a formidable challenge. Herein, we report a facile synthesis of monodisperse palladium nanosheets (Pd nanosheets) and their assembly on graphene oxide (GO) that enhances the catalytic activities of Pd nanoparticles. Simultaneously, the obtained nanocomposites (rGO-Pd) could be applied as a smart near-infrared (NIR) light-responsive nanotheranostic for near infrared imaging-guided chemodynamic/photothermal combined therapy. Notably, rGO-Pd exhibited high peroxidase mimicking activities, which could catalyze the conversion of intratumoral H2O2 to ˙OH. Impressively, the reactive oxygen species (ROS) generation of rGO-Pd was further remarkably enhanced by the endogenous acidity of the tumor microenvironment and the exogenous NIR light-responsive photothermal effect. These collective properties of the rGO-Pd nanozyme enabled it to be a ROS generation accelerator for photothermally enhanced tumor chemodynamic therapy. Thus, the as-developed rGO-Pd may represent a promising new type of high-performance nanozyme for multifunctional nanotheranostics toward cancer.


Assuntos
Melanoma , Fototerapia , Humanos , Fototerapia/métodos , Paládio/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Microambiente Tumoral
19.
Nanoscale ; 15(33): 13595-13602, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37554065

RESUMO

Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) provides controlled in situ activation of prodrugs through chemical reactions that do not interfere with cellular bioprocesses. The direct use of 'naked' TMCs in biological environments can have issues of solubility, deactivation, and toxicity. Here, we demonstrate the design and application of a biodegradable nanoemulsion-based scaffold stabilized by a cationic polymer that encapsulates a palladium-based TMC, generating bioorthogonal nanocatalyst "polyzymes". These nanocatalysts enhance the stability and catalytic activity of the TMCs while maintaining excellent mammalian cell biocompatibility. The therapeutic potential of these nanocatalysts was demonstrated through efficient activation of a non-toxic prodrug into an active chemotherapeutic drug, leading to efficient killing of cancer cells.


Assuntos
Pró-Fármacos , Elementos de Transição , Animais , Paládio/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Catálise , Mamíferos
20.
ACS Appl Mater Interfaces ; 15(33): 39081-39098, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37566573

RESUMO

Recent developments in nanomaterials with programmable optical responses and their capacity to modulate the photothermal effect induced by an extrinsic source of light have elevated plasmonic photothermal therapy (PPTT) to the status of a favored treatment for a variety of malignancies. However, the low penetration depth of near-infrared-I (NIR-I) lights and the need to expose the human body to a high laser power density in PPTT have restricted its clinical translation for cancer therapy. Most nanostructures reported to date exhibit limited performance due to (i) activity only in the NIR-I region, (ii) the use of intense laser, (iii) need of large concentration of nanomaterials, or (iv) prolonged exposure times to achieve the optimal hyperthermia state for cancer phototherapy. To overcome these shortcomings in plasmonic nanomaterials, we report a bimetallic palladium nanocapsule (Pd Ncap)─with a solid gold bead as its core and a thin, perforated palladium shell─with extinction both in the NIR-I as well as the NIR-II region for PPTT applications toward cancer therapy. The Pd Ncap demonstrated exceptional photothermal stability with a photothermal conversion efficiency of ∼49% at the NIR-II (1064 nm) wavelength region at a very low laser power density of 0.5 W/cm2. The nanocapsules were further surface-functionalized with Herceptin (Pd Ncap-Her) to target the breast cancer cell line SK-BR-3 and exploited for in vitro PPTT applications using NIR-II light. Pd Ncap-Her caused more than 98% cell death at a concentration of just 50 µg/mL and a laser power density of 0.5 W/cm2 with an output power of only 100 mW. Flow cytometric and microscopic analyses revealed that Pd Ncap-Her-induced apoptosis in the treated cancer cells during PPTT. Additionally, Pd Ncaps were found to have reactive oxygen species (ROS) scavenging ability, which can potentially reduce the damage to cells or tissues from ROS produced during PPTT. Also, Pd Ncap demonstrated excellent in vivo biocompatibility and was highly efficient in photothermally ablating tumors in mice. With a high photothermal conversion and killing efficiency at very low nanoparticle concentrations and laser power densities, the current nanostructure can operate as an effective phototherapeutic agent for the treatment of different cancers with ROS-protecting ability.


Assuntos
Hipertermia Induzida , Nanocápsulas , Nanopartículas , Neoplasias , Humanos , Feminino , Animais , Camundongos , Fototerapia , Paládio/farmacologia , Paládio/química , Terapia Fototérmica , Espécies Reativas de Oxigênio , Neoplasias/terapia , Nanopartículas/química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...